Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 185: 108534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38458115

RESUMO

Natural purification of pollutants is highly recognized as regulating ecosystem services; however, the purification capacity of tidal flats remains largely unknown and/or unquantified. A 60-day mesocosm transplant experiment was conducted in situ to assess the purification capacity of natural tidal flats. We adopted the advanced sediment quality triad approach, monitoring 10 endpoints, including chemical reduction, toxicity changes, and community recoveries. The results indicated that contaminated sediments rapidly recovered over time, particularly > 50% within a day, then slowly recovered up to âˆ¼ 70% in a given period (60 days). A significant early reduction of parent pollutants was evidenced across all treatments, primarily due to active bacterial decomposition. Notably, the presence of benthic fauna and vegetated halophytes in the treatments significantly enhanced the purification of pollutants in both efficacy and efficiency. A forecast linear modeling further suggested additive effects of biota on the natural purification of tidal flats, reducing a full recovery time from 500 to 300 days. Overall, the triad approach with machine learning practices successfully demonstrated quantitative insight into the integrated assessment of natural purification.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Ecossistema , Sedimentos Geológicos/química , Biota , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Front Med (Lausanne) ; 9: 940960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059818

RESUMO

With the onset of the COVID-19 pandemic, quantifying the condition of positively diagnosed patients is of paramount importance. Chest CT scans can be used to measure the severity of a lung infection and the isolate involvement sites in order to increase awareness of a patient's disease progression. In this work, we developed a deep learning framework for lung infection severity prediction. To this end, we collected a dataset of 232 chest CT scans and involved two public datasets with an additional 59 scans for our model's training and used two external test sets with 21 scans for evaluation. On an input chest Computer Tomography (CT) scan, our framework, in parallel, performs a lung lobe segmentation utilizing a pre-trained model and infection segmentation using three distinct trained SE-ResNet18 based U-Net models, one for each of the axial, coronal, and sagittal views. By having the lobe and infection segmentation masks, we calculate the infection severity percentage in each lobe and classify that percentage into 6 categories of infection severity score using a k-nearest neighbors (k-NN) model. The lobe segmentation model achieved a Dice Similarity Score (DSC) in the range of [0.918, 0.981] for different lung lobes and our infection segmentation models gained DSC scores of 0.7254 and 0.7105 on our two test sets, respectfully. Similarly, two resident radiologists were assigned the same infection segmentation tasks, for which they obtained a DSC score of 0.7281 and 0.6693 on the two test sets. At last, performance on infection severity score over the entire test datasets was calculated, for which the framework's resulted in a Mean Absolute Error (MAE) of 0.505 ± 0.029, while the resident radiologists' was 0.571 ± 0.039.

3.
Inform Med Unlocked ; 30: 100935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382230

RESUMO

Detection of the COVID 19 virus is possible through the reverse transcription-polymerase chain reaction (RT-PCR) kits and computed tomography (CT) images of the lungs. Diagnosis via CT images provides a faster diagnosis than the RT-PCR method does. In addition to low false-negative rate, CT is also used for prognosis in determining the severity of the disease and the proposed treatment method. In this study, we estimated a probability density function (PDF) to examine the infections caused by the virus. We collected 232 chest CT of suspected patients and had them labeled by two radiologists in 6 classes, including a healthy class and 5 classes of different infection severity. To segment the lung lobes, we used a pre-trained U-Net model with an average Dice similarity coefficient (DSC) greater than 0.96. First, we extracted the PDF to grade the infection of each lobe and selected five specific thresholds as feature vectors. We then assigned this feature vector to a support vector machine (SVM) model and made the final prediction of the infection severity. Using the T-Test statistics, we calculated the p-value at different pixel thresholds and reported the significant differences in the pixel values. In most cases, the p-value was less than 0.05. Our developed model was developed on roughly labeled data without any manual segmentation, which estimated lung infection involvements with the area under the curve (AUC) in the range of [0.64, 0.87]. The introduced model can be used to generate a systematic automated report for individual patients infected by COVID-19.

5.
PLoS One ; 16(5): e0250952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961635

RESUMO

The development of medical assisting tools based on artificial intelligence advances is essential in the global fight against COVID-19 outbreak and the future of medical systems. In this study, we introduce ai-corona, a radiologist-assistant deep learning framework for COVID-19 infection diagnosis using chest CT scans. Our framework incorporates an EfficientNetB3-based feature extractor. We employed three datasets; the CC-CCII set, the MasihDaneshvari Hospital (MDH) cohort, and the MosMedData cohort. Overall, these datasets constitute 7184 scans from 5693 subjects and include the COVID-19, non-COVID abnormal (NCA), common pneumonia (CP), non-pneumonia, and Normal classes. We evaluate ai-corona on test sets from the CC-CCII set, MDH cohort, and the entirety of the MosMedData cohort, for which it gained AUC scores of 0.997, 0.989, and 0.954, respectively. Our results indicates ai-corona outperforms all the alternative models. Lastly, our framework's diagnosis capabilities were evaluated as assistant to several experts. Accordingly, We observed an increase in both speed and accuracy of expert diagnosis when incorporating ai-corona's assistance.


Assuntos
COVID-19/diagnóstico , Aprendizado Profundo , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Área Sob a Curva , COVID-19/virologia , Bases de Dados Factuais , Humanos , Pneumonia/diagnóstico , Pneumonia/patologia , RNA Viral/análise , RNA Viral/metabolismo , Curva ROC , Radiologistas/psicologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...